Optimización de la acuicultura marina de jaulas flotantes en Tenerife, Islas Canarias, mediante el uso de modelos basados en Sistemas de Información Geográfica (SIG)
Resumen
Este estudio se centra en la optimización de la acuicultura marina en jaulas flotantes en Tenerife, Islas Canarias. El objetivo principal fue la selección de las zonas más óptimas (estudio de zonación) para la ubicación de las jaulas flotantes dedicadas al cultivo de peces marinos. Este es un factor importante, ya que afectará tanto el éxito de la operación como a un desarrollo sostenible de esta industria. Además, puede solucionar posibles conflictos entre los diferentes usos que se le dan a la zona costera, haciendo un uso racional de esta. La zonación se realizó mediante el uso de modelos desarrollados en sistemas de información geográfica (SIG) y tecnología relacionada, tales como imágenes de satélite, GPS, etc. La integración, manipulación, análisis, y representación de resultados mediante el uso de los SIG resultó una herramienta muy útil en el proceso de toma de decisiones.
Este estudio propuso tres sistemas de jaulas para su uso en diferentes zonas de la Isla. Los resultados muestran que aquellos sistemas de jaulas que pueden instalarse en zonas más expuestas al oleaje, se distribuirán en un área mayor que los más débiles. De los 228 km2 de costa disponibles para ubicar jaulas a profundidades menores de 50 m, se identificaron como zonas adecuadas (sumatoria de las mayores puntuaciones) para ubicar el sistema más robusto (SeaStation?) un área de 61 km2, mientras que para los sistemas intermedios (OceanSpar©) y menos robustos (Corelsa©) se identificó un área de 49 y 37 km2 respectivamente.
This study focused on the optimisation of offshore marine fish-cage farming in Tenerife, Canary Islands. The main objective was to select the most suitable sites for offshore cage culture. This is a key factor in any aquaculture operation, affecting both success and sustainability. Moreover, it can solve conflicts between different coastal activities, making a rational use of the coastal space. Site selection was achieved by using Geographical Information Systems (GIS) based models and related technology, such as satellite images and Global Positioning System (GPS), to support the decision-making process. The integration, manipulations, analysis and presentation of the results by means of GIS-based models proved to be very effective for helping the decision-making process of site selection in study. On the whole, this study revealed the usefulness of GIS as an aquaculture planning and management tool.
Three different cage systems were selected and proposed for different areas around Tenerife. Cage systems that can withstand harsh environments were found to be suitable for use over a broader area of Tenerife’s coastline. Thus, the more robust selftensioned cage (SeaStation©) could be used over a greater area than the weaker gravity cages (Corelsa©). From the 228 km2 of available area for siting cages in the coastal regions with depth of 50 m, the suitable area for siting SeaStation? cages was 61 km2, while the suitable area for OceanSpar? and Corelsa? cages was 49 and 37 km2 respectively.
Texto completo:
PDFReferencias
Aguilar-Manjarrez, J. (1996) Development and evaluation of GIS-based models for planning and management of coastal aquaculture: a case study in Sinaloa, Mexico. PhD Thesis, University of Stirling, 373 pp.
Beveridge, M. (1996) Cage Aquaculture. Fishing News Books, Great Britain, 346 pp.
Eastman, J.R. (1993) IDRISI version 4.1 update Manual. Clark University Graduate School of Geography, Worcester, MA, USA, 120 pp.
GESAMP (IMO/FAO/UNESCO/WMO/WHO/IAEA/UN/UNEP Joint Group of Expert on the Scientific Aspects of Marine Pollution) (1991) Reducing Environmental Impacts of Coastal Aquaculture. Rep. Stud. GESAMP 47: 39 pp.
GESAMP (IMO/FAO/UNESCO/WMO/WHO/IAEA/UN/UNEP Joint Group of Experts on the Scientific Aspects of Marine Pollution) (1997) Towards safe and effective use of chemicals in coastal aquaculture. Rep. Stud. GESAMP 65: 40pp.
Johnston, C.A. (1998) Geographic Information Systems in Ecology. Blackwell Science Ltd., Great Britain, 351 pp.
Kapetsky, J.M. (1985) Mangroves, fisheries and aquaculture: selected working papers submitted to the eleventh session of the advisory committee of experts on marine resources research. Supplement. FAO, Rome, Italy, 338 pp.
Kapetsky, J.M. (1987) Satellite remote sensing to locate and inventory small water bodies for fisheries management and
aquaculture development in Zimbabwe. CIFA Occasional Paper, (14), FAO Fisheries Department, Rome, Italy, 11 pp.
Loverich, G. (1997) A Summary Of The Case Against The Use Of Gravity Cages In The Sea Farming Industry. Aquaculture
Pacific Exchange, Campbell River, British Columbia, Canada.
Meaden, G.J. y Kapetsky, J.M. (1991). Geographical information systems and remote sensing in inland fisheries and aquaculture. FAO Fisheries Technical Paper 262. FAO, Rome.
Pérez, O.M. Telfer T.C. Ross L.G. y Beveridge M.C.M. (in press) Geographical information systems (GIS) as a tool for
modelling waste distribution under marine fish cages. Coastal and Estuarine Marine Science.
Ross, L.G., Mendoza, Q.M.E.A. y Beveridge, M.C.M. (1993) The application of geographical information systems to site
selection for coastal aquaculture: an example base on salmonid cage culture. Aquaculture 112, 165-178
Enlaces refback
- No hay ningún enlace refback.
Copyright (c) 2016 Revista AquaTIC