Los bacteriófagos como herramienta para combatir infecciones en Acuicultura

Concepción Ronda, Manuela Vázquez, Rubens López

Resumen


El uso de los bacteriófagos (fagos), los entes más abundantes en la naturaleza, como agentes terapéuticos se remonta a su descubrimiento a principios del pasado siglo. La aparición generalizada de resistencias bacterianas frente a los antibióticos unidos a los avances tecnológicos que permiten la preparación de fagos purificados y un mejor conocimiento molecular de los mismos ha llevado a reconsiderar los trabajos realizados en los países de la antigua Unión Soviética y a proponer el uso de los fagos, los virus que infectan a las bacterias, como una auténtica alternativa terapéutica. Se analizan en esta minirevisión los trabajos más relevantes realizados hasta el momento en el uso de la terapia fágica en Acuicultura y se discute, asimismo, la posibilidad de usar un novedoso método alternativo basado en el empleo de enzimas líticas,
proteínas codificadas por los fagos, que se denominan enzibióticos.

 

Bacteriophages (phages), the most abundant entities in nature, have been proposed as therapeutic agents since they were isolated in the early years of the last century. The current antibiotic resistance of most pathogenic microorganisms together with the technical achievements in the study of phages has led to reconsider the work carried out for scientists of the former Soviet Union and to propose the use of bacterial viruses as a real therapeutical alternative. In this minireview we analyze the most relevant contribution on phage therapy in Aquaculture as well as the new possibility that offer the use of phage and phage products, like the lytic enzymes, named enzybiotics, as an alternative tool in therapy.


Texto completo:

PDF

Referencias


Biswas, B., S. Adhya, P. Washart, B. Paul, A. N. Trostel, B. Powel, R. Carlton, C.R. Merril. (2002). Bacteriophage therapy rescues mice bacteremic from a clinical isolate of vancomicin-resistant Enterococcus faecium. Infect Immun 70, 587-598

d'Hérelle, F. (1917). Sur un microbe invisible antagoniste des bacilles dysentériques. Compt Rend Acad. Sci 165, 373-375

Dopazo, C.P., M.L. Lemos, C. Lodeiros, J. Bolinches, J L. Barja, A.E. Toranzo. (1988). Inhibitory activity of antibiotic-producing marine bacteria against fish pathogens. J. Appl. Bacteriol. 65, 97-101

García, P., A. C. Martín, R. López. (1997). Bacteriophages of Streptococcus pneumoniae: a molecular approach. Microb. Drug Resist. 3, 165-176

Kucharewicz-Krukowska, A., S. Slopek. (1987). Immunogenic effect of bacteriophage in patients subjected to phage therapy. Arch. Immunol. Ther. Exp. (Warsz) 5, 553-561.

Kusuda, R., K. Kawai. (1998). Bacterial diseases of culture marine fish in Japan. Fish Pathol. 33, 221-227

Loeffler, J.M., D. Nelson, V.A. Fischetti. (2001). Rapid killing of Streptococcus pneumoniae with a bacteriophage cell wall hydrolase. Science 294, 2170-2172

McDonnell, M., C. Ronda-Laín, A. Tomasz. (1975). "Diplophage": a bacteriophage of Diplococcus pneumoniae. Virology 63, 577-582

Merril, C.R., B. Biswas, R. Carlton, N.C. Jensen, G.J. Creed, S. Zullo, S. Adhya. (1996). Long-circulating bacteriophage as antibacterial agents. Proc. Natl. Acad. Sci. USA 93,3 188- 3192

Nakai, T., S.C. Park. (2002). Bacteriophage therapy of infectious diseases in aquaculture. Res. Microbiol. 153, 13-18

Nakai, T., R. Sugimoto, K.H. Park, S. Matsuoka, K. Mori, T. Nishioka, K. Maruyama. (1999). Protective effects of bacteriophage on experimental Lactococcus garviae infection in yellotail. Dis. Aquat Org 37, 33-41

Nelson, D., L. Loomis, V.A. Fischetti. (2001). Prevention and elimination of upper respiratory colonization of mice by group A streptococci by using a bacteriophage lytic enzyme. Proc. Natl. Acad. Sci. USA 98, 4107- 4112.

Park, S.C., I. Shimamura, M. Fukunaga, K. Mori, T. Nakai. (2000). Isolation of bacteriophages specific to a fish pathogen,

Pseudomonas plecoglissidica, as a candidate for disease control. Appl. Environ. Microbiol. 66, 1416-1422

Ronda, C., R. López, E. García. (1981). Isolation and characterization of a new bacteriophage, Cp-1, infecting Streptococcus pneumoniae. J. Virol. 40, 551-559

Schuch, R., D. Nelson, V.A. Fischetti. (2002). A bacteriolytic agent that detects and kills Bacillus anthracis. Nature 418, 884-889

Sheehan, M.M., J.L. García, R. López, P. García. (1997). The lytic enzyme of the pneumococcal phage Dp-1: a chimeric lysin of intergeneric origin. Mol. Microbiol. 25, 717-725

Smith, H.W., M.B. Huggins, K.M. Shaw. (1987). The control of experimental Escherichia coli diarrhoea in calves by means of bacteriophages. J. Gen. Microbiol. 133, 1111-1126

Stone, R. (2002). Stalin's forgotten cure. Science 298, 728-731

Sulakvelidze, A., A.Z., J.G. Morris Jr. (2001). Bacteriophage therapy. Antmicrob. Agents Chemother. 208, 649-659

Twort, F.W. (1915). An investigation on the nature of ultramicroscopic viruses. Lancet ii, 1241-1243


Enlaces refback

  • No hay ningún enlace refback.


Copyright (c) 2016 Revista AquaTIC